The Near-Optimal Feasible Space of a Renewable Power System Model

Fabian Neumann and Tom Brown

fabian.neumann@kit.edu
Institute for Automation and Applied Informatics
Karlsruhe Institute of Technology (KIT), Germany

June 12, 2020
Open Energy System Modelling with PyPSA-Eur

Find the long-term cost-optimal energy system, including investments and short-term costs:

$$\text{Min} \begin{bmatrix} \text{Yearly system costs} \end{bmatrix} = \text{Min} \left[\sum_n \left(\text{Annualised capital costs} \right) + \sum_{n,t} \left(\text{Marginal costs} \right) \right]$$

subject to

- meeting energy demand at each node n (e.g. region) and time t (e.g. hour of year)
- transmission constraints between nodes and linearised power flow
- wind, solar, hydro (variable renewables) availability time series $\forall n, t$
- installed capacity \leq geographical potentials for renewables
- fulfilling CO$_2$ emission reduction targets
- Flexibility from gas turbines, battery/hydrogen storage, HVDC links

Source: Tom Brown, and documentation at pypsa-eur.readthedocs.io and pypsa.readthedocs.io
Optimal System Layout for 100% emission reduction

- HVAC Line Capacity: 2 GW, 5 GW, 10 GW
- HVDC Link Capacity: 2 GW, 5 GW, 10 GW
- Technology:
 - Onshore Wind
 - Offshore Wind (AC)
 - Offshore Wind (DC)
 - Solar
 - Pumped Hydro Storage
 - Reservoir & Dam
 - Run of River
 - Hydro Reservoirs
 - Battery
 - Hydrogen
 - HVDC Links
 - HVAC Lines
- Average system cost [EUR/MWh]:
- Offshore Wind (DC): 29%
- Offshore Wind (AC): 16%
- Onshore Wind: 25%
- Solar PV: 14%
- Run of River: 4%
- Hydro Reservoirs: 11%

- power sector only
- ≤900 200 nodes
- 4380 snapshots (2-hourly resolution for 1 year)
- greenfield (except grid, hydro, run of river)
Long-Term Power System Investment Planning

Obtaining Feasible Near-Optimal Solutions

Results

Conclusion & Outlook

Backup

Objective Function

\(f(x) \)

Feasible Space

Decision Variables

Lots of similar solutions

Optimal Solution
The objective function is $f(x)$, and the feasible space is defined as $f(x) \leq (1 + \varepsilon) \cdot f(x^*)$.

The optimal solution x^* lies within the feasible space, and there are lots of similar solutions nearby. The decision variable is plotted on the x-axis.
Experiments

1. Find the **least-cost power system**.

2. For many $\varepsilon \in \{0.5, 1, \ldots, 10\}\%$ **minimise/maximise** investment in:
 - generation capacity (onshore and/or offshore wind, solar),
 - storage capacity (hydrogen, batteries, total storage) and
 - transmission volume (HVAC lines and HVDC links)

 such that **total annual system costs increase by less than ε**.

Can also perform minimisation/maximisation of investment **per carrier and country**!
Starting from the optimal solution, ...

Optimal Transmission Volume
Epsilon: 0.0%

This is the optimal solution from earlier!
... seek the minimum transmission volume. \((\varepsilon = 1.0\%) \)

Minimise

Transmission Volume

Epsilon:

1.0%
... seek the minimum transmission volume. \((\varepsilon = 5.0\%)\)

Minimise

Transmit

Volume

Epsilon:

5.0%
... seek the minimum transmission volume. ($\varepsilon = 10.0\%$)

Minimise
Transmission
Volume

Epsilon:
10.0%
Near-optimal total system capacity ranges for varying ε
Correlations when minimising transmission extension
Correlations when minimising offshore wind

- Wind [GW]
- Onshore Wind [GW]
- Storage [GW]
- Hydrogen [GW]
- Solar PV [GW]
- Offshore Wind [GW]
- Transmission [TWkm]
- Battery [GW]

The diagrams illustrate the correlations between different energy sources and transmission capacity for varying epsilon [ε] percentages, indicating feasible near-optimal solutions for long-term power system investment planning.
Correlations when minimizing H_2 storage
Conclusion & Outlook

Goals
- set of technology-specific boundary conditions for pre-defined cost ranges

Results
- high variance in the deployment of individual system components
- either offshore or onshore wind and some H₂-storage and grid reinforcement

Outlook
- improve visualising dependencies (interactive website, more search directions)
- repeat with coupling between multiple energy sectors
- include parametric uncertainty of cost assumptions ("fuzzy" boundaries)
Resources

Unless otherwise stated, the graphics and text are Copyright ©Fabian Neumann, 2019-2020.

This work is licensed under a Creative Commons “Attribution 4.0 International” license.

Find the slides:
https://neumann.fyi/assets/pscc2020-near-optimal.pdf

Send an email:
fabian.neumann@kit.edu

Find the energy system model:
https://github.com/pypsa/pypsa-eur
Open Energy System Modelling with PyPSA-Eur

- Grid data from ENTSO-E transparency map
- Power plant database combines multiple open databases using matching algorithms
- Renewable energy time series from reanalysis (historical) weather data (ERA-5, SARAH-2)
- Geographic potentials from land use databases
- Time series aggregation (usually 8760h)
- Network clustering (k-means algorithm)

Code and Documentation

- https://pypsa-eur.readthedocs.io
- https://github.com/PyPSA/pypsa-eur

Source: Tom Brown, and documentation at pypsa-eur.readthedocs.io and pypsa.readthedocs.io
Let's consider the objective function $f(x, y)$ and the feasible space \mathbb{F}. The goal is to obtain a feasible near-optimal solution $f(x^*, y^*)$. The constraint is $f(x, y) \leq (1+\varepsilon)f(x^*, y^*)$. The decision variables are x and y. The optimal solution is marked by a dot, while the max and min values are indicated by plus and minus signs, respectively.
Isoline $f(x) = f(x^*)$

Isoline $f(x) = (1 + \varepsilon) \cdot f(x^*)$

Optimum $x^* = \arg\min_x f(x)$

$\min \{x_1 : f(x) \leq (1 + \varepsilon) \cdot f(x^*)\}$

$\max \{x_1 : f(x) \leq (1 + \varepsilon) \cdot f(x^*)\}$

feasible space
Dependencies: Extremes cannot be achieved simultaneously.
Correlations of Investment in Technologies
Distributional Equity: Lorenz Curves and Gini Coefficients

![Graph showing cumulative share of electricity demand and generation with Lorenz curves and Gini coefficients.](image-url)
Long-Term Power System Investment Planning

Results

Conclusion & Outlook

Backup
Near-optimal total systems for varying ε (100% reduction)
Near-optimal total systems for varying ϵ (95% reduction)
Near-optimal total systems for varying ε (80% reduction)
Near-optimal total system capacity ranges for varying ε (100 nodes)
Near-optimal total system capacity ranges for varying ϵ (200 nodes)